Abstract

Relationships between albacore tuna (Thunnus alalunga) longline catch per unit effort (CPUE) and environmental variables from model outputs in New Caledonia’s Exclusive Economic Zone (EEZ) were examined through generalized linear models at a 1° spatial resolution and 10-day temporal resolution. At a regional (EEZ) scale, the study demonstrated that a large part of albacore CPUE variability can be explained by seasonal, interannual and spatial variation of the habitat. Results of the generalized linear models indicated that catch rates are higher than average in the northwestern part of the EEZ at the beginning of the year (January) and during the second half of the year (July–December). In the northwestern region of the EEZ, high CPUEs are associated with waters <20.5° in the intermediate layer and with moderate values of primary production. Longline CPUE also appeared to be dependent on prey densities, as predicted from a micronekton model. Albacore CPUE was highest at moderate densities of prey in the epipelagic layer during the night and for relatively low prey densities in the mesopelagic layer during the day. We also demonstrated that the highest CPUEs were recorded from 1986 to 1998, which corresponds to a period with frequent El Niño events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.