Abstract
Advanced oxidation involving O 3/H 2O 2 was used to eliminate 1,4-dioxane and to enhance the biodegradability of dioxane-contaminated water. Oxidation experiments were carried out in a bubble column reactor operating in fed-batch. The rate of dioxane removal and enhancement in biodegradability was investigated at hydrogen peroxide to ozone ratios between 0 and 0.6 mol:mol and pH between 5 and 11. A theoretical model was also applied to predict the experimental data and to investigate the effects of dioxane concentration, pH, and H 2O 2 concentration. The model predictions fit the experimental data well and there was a linear correlation between dioxane oxidation and BOD enhancement. At low dioxane concentrations, the oxidation rate was first order and it gradually approached zero order with increasing dioxane concentration. Also, the biodegradability of the solution increased with pH up to about 9 and it stayed constant with further pH increase. Hydrogen peroxide initially enhanced dioxane removal and biodegradability enhancement of the solution. However, at H 2O 2:O 3 ratios greater than about 0.4–0.45 mol:mol, i.e. about 2.90 mM for H 2O 2 concentration, H 2O 2 had negative impacts and resulted in reduced dioxane removal and biodegradability increase.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.