Abstract

The TID (total ionizing dose) in-situ experiments of LC1020B, an anti-fuse FPGA (Field Programmable Gate Array) device, were designed and carried out under different dose rates, and the influence of dose rate on the TID effect of FPGA was studied. The experimental results show that: 1) the TID irradiation failure of the FPGA under different dose rates has nothing to do with the input voltage parameter exceeding the standard. 2) with the decrease of cobalt source irradiation dose rate [171, 26.83, and 2.68 mGy(Si)/s], the TID effect failure dose threshold [168, 229, and 334 Gy(Si), respectively] of the FPGA gradually increased, showing obvious attenuation of low dose rate damage. Theoretical analysis suggests that, compared with the space charge limitation effect, the oxide charge annealing effect plays a dominant role, and longer irradiation time is beneficial to the oxide charge annealing. And based on the experimental data, an FPGA TID analytical model with power consumption current as the damage characterization parameter is established, which lays a foundation for scientific evaluation of radiation effect of anti-fuse FPGAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.