Abstract

Studies have been steadily conducted on the forming process of the bending pipe that enables the transport of underground resources. Recently, it has been suggested that bent pipes for transport withstand high pressure during the forming process, but it is judged that the research on methods able to overcome the limitations of non-uniform dimensional distribution due to the difference in the mechanical properties and thickness of the outer and inner pipes is insufficient. This study proposes a new precision forging method called the cut-forged-joint process (CFJP) for the manufacture of bent pipe containing bi-metal. The initial billet and mandrel were designed considering the standard dimensions of bent pipes, and pre-simulation was performed applied to the designed models. The results of dimensional accuracy obtained by forging experiments and the computational forming simulation were compared with each other to verify the reliability. As a final outcome, it was confirmed that it is possible to secure the dimensional accuracy of bi-metal bent pipes by applying the newly proposed CFJP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.