Abstract

This paper is concerned with the performance of geo-textile (GT) against chemical condition. GT is generally adopted for the upper part of geo-membrane (GM) for waste landfills and thus it is very important to consider the performance of GT against certain chemical environments until landfill is completed. In this study, PVA geo-textile/HDPE geo-membrane was prepared to investigate the waste landfill related properties in terms of long-term performance against chemical conditions imposed. GT composites of PVA GT/HDPE GM, PVA GT and HDPE GM were produced in thermal bonding process. Polyester and polypropylene GT were also manufactured in needle punching process. The experiments have been conducted under a modified version of EPA 9090 test method which is very similar to the method of evaluating chemical resistance of flexible membrane liner by the US Environmental Protection Agency (EPA). In this testing method, samples immersed in chemical of different solutions up to 150 days at 30 day interval were obtained to find tensile strength holding rate and chemical resistance. The analysis in this paper is focused to evaluate the effect of different pH conditions and temperature environments on geo-synthetics weights strength retention. It was concluded from the experiments that tensile strength of GT composites against leachate were reduced by 10 to 20% in both polypropylene and polyester non-woven GT. The reduction was more significant at temperatures of 50 °C than that at 25 °C. The experiments conducted in this study demonstrated that PVA GT is excellent in terms of chemical resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.