Abstract
Objectives: The Recent COVID 19 Pandemic has capped the efficacy of the mostly used existing touch-based fingerprint detection. Hence, the main objective of this study is to develop a lightweight, robust and efficient touchless fingerprint identification model. To cope up with touchless environment demands, an emphasis is made on improvement in local conditions, feature modalities as well as learning environment. Methods: Considering these objectives, the focus of this study is on two different methods for classification of contactless fingerprint. In the first method structural features like minutiae details are extracted followed by classification by SSIM. In the second method GLCM textural features were extracted followed by classification using Random Forest algorithm. In the proposed method, performance assessment is done by considering data samples of 1000 random users that are collected from different benchmark databases like Hong Kong Polytechnic University 3D-fngerprint images Database Version 2.0, Touchless Fingerprint Database of IIT Bombay, IIT Kanpur, IIT Jodhpur. Findings: Though, touchless fingerprint detection is considered as a viable alternative; yet, the real-time data complexities like non-linear textural patterns, dusts, non-uniform local conditions like illumination, contrast, orientation make it complex for realization. Moreover, the likelihood of ridge discontinuity and texture damages can majorly limit its efficacy. Novelty: The proposed model mainly focusses on reducing Equal Error Rate and improving the accuracy of contactless fingerprint classification by extracting textural features rather just sticking to conventional structural feature-minutiae. The Proposed method outperforms when compared with the existing state of the art methods by achieving an accuracy of 94.72%, precision of 98.84%, recall of 97.716%, FMeasure 0.9827 and a reduced EER of about 0.084. The key novelty of this approach was that it doesnโt require any surface 3D reconstruction, rather it employed different mathematical approaches to retrieve surface normal and minutiae information. Keywords: SSIM; GLCM; Contactless Fingerprint; Minutiae; EER; Confusion Matrix
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.