Abstract
Aiming to address the problem of construction and environmental risks in tunnel construction through the soil–rock mixture backfill area, this paper carried out a seismic dynamic response model test of a pile-supported tunnel based on practical projects. Firstly, the stress–strain curves and failure characteristics of the soil–rock mixture in the study area were obtained through triaxial tests, and based on this, similar materials for the model test were developed. Then, a vibration table model test was devised to investigate the seismic dynamic response of the pile–tunnel structure. The findings revealed the following: when subjected to seismic waves, the soil–rock mixture stratum displayed a “skin effect” in its acceleration response, indicating that closer proximity to the surface led to heightened horizontal acceleration responses; the horizontal peak acceleration of the grouting mixture stratum in the vertical direction exhibited a “Zigzag” pattern; the peak values of strain response and bending moment in the tunnel lining cross-section exhibited an “X” shape and inverted “V” shape, respectively. The bending moment at the pile crown increased alongside the peak value of the input seismic wave acceleration. The maximum surface settlement in the model ranged from 0.5 to 1 cm, with the tunnel–pile structure effectively mitigating surface settlement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.