Abstract

Over the years, the fluid flows in conjunction with thermal transport between non-parallel surfaces having converging nature is of great significance due to their broad spectrum of applications, which include fluid flows through nozzles in petroleum engineering, blood flow in arteries, lubrication systems, automobile radiators, thermal pumps, and water purification processes. Additionally, hybrid nanofluid is a prolific topic because of its thermal properties and potentials which provide a better performance even compared with common nanofluid in optimizing heat transfer. Therefore, this article presents a numerical simulation to investigate the heat transport characteristics of hybrid nanofluids in Jeffery-Hamel flow through a convergent channel. The considered hybrid nanofluids are composed of Copper (Cu) and Graphene-oxide (Go) as suspended nanoparticles and water as base fluid. This analysis further includes the impacts of viscous dissipation and magnetic field. A mathematical model for fluid flow and heat transfer are constructed with the help of cylindrical polar coordinates. The governing equations are converted into a system of ordinary differential equations (ODEs) by Lie symmetry group transformation. A MATLAB code is exercise to get the numerical solutions for flow and thermal distributions. An interesting phenomenon is that dual solutions are obtained in the computation. Thus, a comprehensive discussion is included on the dual solutions for various involved variables. The current findings may be employed in petroleum science, r biomedical scientists, polymer industry, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.