Abstract

In order to assess the chemical properties of groundwater and soil in ophiolitic zone of Firuzabad, in east of Shahrood, Iran, 10 soil samples with regard to sensitive points (vicinity to mine, ophiolitic rocks, and villages) and 10 groundwater samples including nine samples from springs, and also one sample from a well in a village of the study area were taken. These samples were analyzed in laboratories using inductively coupled plasma method. The soil samples were also evaluated for grain size. The obtained results show that most of heavy and major elements were exceeding the permissible levels in soil and water samples in the study area. On the subject of soil quality, concentrations of elements Cr, Mn, Fe, Ca, Mg, Ca, Ni, and Zn are above permissible levels. Enrichment factor and index of geoaccumulation have been calculated for heavy and major elements of all soil samples. According to the obtained results, it may be argued that soil samples are contaminated in relation to the above-mentioned indices. Comparing the concentrations of elements with results of grain size analysis illustrates that the concentrations of Cr, Ni, Fe, Mg, and Co are positively correlated with sand fraction and the concentrations of Al, P, Mn, and Pb are directly proportional with clay fraction in soil samples. The study on water contamination suggests that concentrations of elements Cr, Ni, and Mg in groundwater samples of the study area are above the permissible levels. Some indices like metal index and heavy metal pollution index show that most of the water samples include heavy metal contamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.