Abstract
Stereotactic radiosurgery requires sub-millimetre accuracy in patient positioning and target localization. Therefore, verification of the linear accelerator (linac) isocentre and the laser alignment to the isocentre is performed in some clinics prior to the treatment using the Winston-Lutz (W-L) test with films and more recently with images obtained using the electronic portal imaging devices (EPID). The W-L test is performed by acquiring EPID images of a radio-opaque ball of 6mm diameter (the W-L phantom) placed at the isocentre of the linac at various gantry and table angles, with a predefined small square or circular radiation beam. In this study, the W-L test was performed on two linacs having EPIDs of different size and resolution, viz, a TrueBeam™ linac with aS1000 EPID of size 40×30cm(2) with 1024×768 pixel resolution and an EDGE™ linac having an EPID of size 43×43cm(2) with pixel resolution of 1280×1280. In order to determine the displacement of the radio-opaque ball centre from the radiation beam centre of the W-L test, an in-house MATLAB™ image processing code was developed using morphological operations. The displacement in radiation beam centre at each gantry and couch position was obtained by determining the distance between the radiation field centre and the radio-opaque ball centre for every image. Since the MATLAB code was based on image processing that was dependent on the image contrast and resolution, the W-L test was also compared for images obtained with different beam energies. The W-L tests were performed for 6 and 8MV beams on the TrueBeam™ linac and for 2.5 and 6MV beams on the EDGE™ linac with a higher resolution EPID. It was observed that the images obtained with the EPID of higher resolution resulted in same accuracy in the determination of the displacement between the centres of the radio-opaque ball and the radiation beam, and significant difference was not observed with images acquired with different energies. It is concluded that the software based on morphological operations provided an accurate estimation of the displacement of the ball centre from the radiation beam center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australasian Physical & Engineering Sciences in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.