Abstract
The development of central pontine myelinolysis was studied in rats. Severe hyponatraemia was induced using vasopressin tannate and 2.5% dextrose in water and then rapidly corrected with hypertonic saline alone, hypertonic saline and dexamethasone simultaneously, or hypertonic saline plus dexamethasone 24 h later. The permeability of the blood-brain barrier was evaluated using the extravasation of Evans blue dye and the expression of inducible nitric oxide synthase (iNOS) in the brain was examined using Western blot analysis. Histological sections were examined for demyelinating lesions. In rats receiving hypertonic saline alone, Evans blue dye content and expression of iNOS began to increase 6 and 3 h, respectively, after rapid correction of hyponatraemia and demyelinating lesions were seen. When dexamethasone was given simultaneously with hypertonic saline, these increases were inhibited and demyelinating lesions were absent. These effects were lost if dexamethasone injection was delayed. Disruption of the blood-brain barrier and increased iNOS expression may be involved in the pathogenesis of central pontine myelinolysis, and early treatment with dexamethasone may help prevent the development of central pontine myelinolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.