Abstract

We present a study of the multi-canonical Monte Carlo method which constructs and exploits Monte Carlo procedures that sample across an extended space of macrostates. We examine the strategies by which the sampling distribution can be constructed, showing, in particular, that a good approximation to this distribution may be generated efficiently by exploiting measurements of the transition rate between macrostates, in simulations launched from sub-dominant macrostates. We explore the utility of the method in the measurement of absolute free energies, and how it compares with traditional methods based on path integration. We present new results revealing the behaviour of the magnetization distribution of a critical finite-sized magnet, for magnetization values extending from the scaling region all the way to saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.