Abstract

An extensive investigation of the effect of numerical dissipation on the calculation of supersonic, separated flow over a rearward-facing step is carried out. The complete two-dimensional Navier-Stokes equations are solved by means of MacCormack's standard explicit, unsplit, time-dependent, finite difference method. A fourth-order numerical dissipation term is added explicitly. The magnitude of this term is progressively varied, and its consequences on the flowfield calculations are identified and studied. For a cold-wall, heat transfer case, numerical dissipation had a major effect on the results, particularly in the separated region. However, rather dramatically for an adiabatic wall case, numerical dissipation had virtually no effect on the results. The role of grid size on both the influence of numerical dissipation, and on the overall accuracy of the separated flow solutions is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.