Abstract

This paper is concerned with the role some parameters indexing four important families within the multivariate elliptically contoured distributions play as indicators of multivariate kurtosis. The problem is addressed for the exponential power family, for a subclass of the Kotz family and for the Pearson type II and type VII distributions. Once such a problem is analyzed, we study the effect these parameters have, as kurtosis indicators, on binary discriminant analysis by exploring their relationship with the error rate of the Bayes discriminant rule. The effect is analyzed under mild conditions on the kernel function generating the elliptical density. Some numerical examples are given in order to illustrate our theoretical insights and findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.