Abstract

The main purpose of this paper is to study the carbide tip's surface temperature and the cutting forces of milling stainless steel with nose radius worn tools. A new cutting temperatures model incorporating tool worn factor and using the variations of shear and friction plane areas occurring in tool worn situations are presented in this paper. The frictional forces and heat generation on elementary cutting tools are calculated by using the measured cutting forces and the oblique cutting analysis. The tool tip and cutting edges are treated as a series of elementary cutting tips. The carbide tip’s temperature distribution is solved by finite element analysis (FEM) method. Keywords: Milling, stainless steel, cutting temperatures, nose radius tools, FEM

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.