Abstract

A study is presented on the influence of the air flow rate and surface geometry on the thermal-hydraulic performance of commercial tube-fin ‘no-frost’ evaporators. A specially constructed wind-tunnel calorimeter was used in the experiments from which data on the overall thermal conductance, pressure drop, Colburn j-factor and Darcy friction factor, f, were extracted. Eight different evaporator samples with distinct geometric characteristics, such as number of tube rows, number of fins and fin pitch were tested. Semi-empirical correlations for j and f are proposed in terms of the air-side Reynolds number and the finning factor. A discussion is presented on the performance of the evaporators with respect to specific criteria such as the pumping power as a function of heat transfer capacity and the volume of material in each evaporator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.