Abstract
Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a low energy nitrogen ion beam with an energy of 10 keV at a fluence of 13 × 1014 N+/cm2 when glycerin at a 15% concentration was used as a protector. The effect on the biomass of E. coli after N+ implantation was analyzed in detail by statistic methods. The screening methods used in this study were proven to be effective. After continuous mutagenicity, a high-yield tryptophanase strain was selected and both its biomass and enzymatic activity were higher than those of the parent strain. The results of scale-up production showed that the biomass could reach wet weight 8.2 g/L and 110 g L-tryptophan could be formed in the volume of the 1l enzymatic reaction system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.