Abstract

To examine as randomly as possible the role of the beta-ketoacyl and acyl carrier protein (ACP) components of bacterial type II polyketide synthases (PKSs), homologs of the chain-length-factor (CLF) genes were cloned from the environmental community of microorganisms. With PCR primers derived from conserved regions of known ketosynthase (KSalpha) and ACP genes specifying the formation of 16- to 24-carbon polyketides, two CLF (KSbeta) genes were cloned from unclassified streptomycetes isolated from the soil, and two were cloned from soil DNA without the prior isolation of the parent microorganism. The sequence and deduced product of each gene were distinct from those of known KSbeta genes and, by phylogenetic analysis, belonged to antibiotic-producing PKS gene clusters. Hybrid PKS gene cassettes were constructed with each novel KSbeta gene substituted for the actI-ORF2 or tcmL KSbeta subunit genes, along with the respective actI-ORF1 or tcmK KSalpha, tcmM ACP, and tcmN cyclase genes, and were found to produce an octaketide or decaketide product characteristic of the ones known to be made by the heterologous KSalpha gene partner. Since substantially less than 1% of the microorganisms present in soil are thought to be cultivatable by standard methods, this work demonstrates a potential way to gain access to a more extensive range of microbial molecular diversity and to biosynthetic pathways whose products can be tested for biological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.