Abstract

Fibre/matrix interfacial properties and interfacial shear strengths (IFSS) in epoxy composites reinforced by dual basalt and SiC fibres (DFC) were investigated by the fragmentation method combined with acoustic emission (AE) analysis. Statistical analysis of fibre tensile strength was performed in terms of statistical parameters. The tensile strength and elongation of basalt and SiC fibres decreased with increasing gauge length because of the size effect. Fibre tensile strengths above an optimum concentration decreased because of the stress concentrations at lumps in the coating. When an amino–silane coupling agent was used, the IFSS showed significant improvements of more than three times under dry conditions. The IFSS was also considerably improved under wet conditions. This environmental effect is probably due to chemical and hydrogen bonds as well as to interdiffusion effects in two different interphases in the fibre/silane-coupling-agent/epoxy-matrix system. In situ monitoring of AE during the straining of DFC specimens showed the sequential occurrence of two distinct groups of AE data. The first group may have come from fibre breakages, and the second mainly from cracking of the epoxy matrix. Characteristic frequencies coming from the different failure modes of the fibres and epoxy matrix were investigated by fast Fourier transform (FFT) analysis. By setting an appropriate threshold level, a one-to-one correspondence between the number of AE events and fibre breakages was established. This AE method could be correlated well with the fragmentation technique of obtaining the IFSS value. It can be also be applied to semi- or non-transparent composites where visual observation is not possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.