Abstract

In this paper, the high temperature, deformation behaviour of beta titanium alloy Ti-20V-4Al-1Sn sheet is studied by performing uniaxial tension experiments at three different strain rates at high temperatures of 700°C, 750°C and 800°C. The stress-strain curves for these temperatures show strain rate sensitivity, yield point phenomena and continuous flow, softening patterns. Microstructures of deformed specimens at several representative deformation stages and different strain rates are studied using an optical microscope. Dynamic recovery does not occur at the early stage of deformation including the yield-point and the subsequent yield drop regime, but it is activated at a large deformation stage, where it is affected by both strain rate and strain. A viscoplastic, constitutive model, based on the assumption of rapid dislocation multiplication, is proposed to describe such high temperature, yield-point phenomena. In this modelling, the softening effect due to dynamic recovery is also considered. The stress-strain responses, predicted by the constitutive model, well capture the yield-point phenomena, strain rate sensitivity and subsequent continuous flow, softening behaviour of the beta titanium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.