Abstract

Chemically synthesized hydroxyapatite/poly- l-lactide (HAp/PLLA) composite biomaterial was studied in vivo. The biocomposite was implanted into Balb/c Singen mice and after 1 and 3 weeks removed from their organisms and analyzed by the FT-IR spectroscopy. After 1 week of testing in vivo the implanted sample gave a spectrum in which absorption bands arising from newly formed functional groups of amine and peptide can be seen. After 3 weeks, a spectrum with pronounced absorption bands at 3420 and 1650 cm −1 assigned to newly generated collagen, a component of the extracellular connective-tissue matrix, was registered. Also, decrease of the intensity absorption band at 1760 cm −1 originating from the CO group of PLLA indicates bioresorption of the PLLA used. Analysis of the microstructure of the sample surface by scanning electron microscopy before and after implantation revealed bioresorption of the PLLA polymer phase and generation of collagen fibers at the sites of implanted bioresorptive PLLA. A mixture of autologous bone powder and HAp/PLLA biocomposite was also examined. After implantation, the same final products as in the case of HAp/PLLA composite biomaterial used alone were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.