Abstract

In the present study, the Dispersion-RelationPreserving (DRP) scheme by Tam and coworkers, and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang, are assessed. The original schemes are developed in the finite difference framework; in the present effort, their corresponding finite volume versions are developed. Both DRP and OPC schemes, based on either finite difference or finite volume approach, attempt to optimize the coefficients for high resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. Highlighting the principal characteristics of the schemes and utilizing simple linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes again perform comparably, and offer substantially better solutions in regions of high gradient or discontinuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.