Abstract

The adsorption of the 2,3,7,8-tetrachlorodibenzodioxin (TCDD) molecule on the B12N12 nanocage (B12N12-NC) was studied by M06-2X/6-31++G** method. There are three sites for TCDD adsorption on B12N12-NC. The B–B atom pair in six-membered rings (B(6MR)–B(6MR)) of B12N12-NC is the preferable adsorption site. When TCDD approaches the B12N12 nanocage, electronic exchange between them occurs, and TCDD is converted to 3,4-dichlorophenol, 3-chloroprop-2-en-1-ol, and 1-chloroprop-1-ene. The HOMO/LUMO energy, energy gaps (Eg), thermodynamic properties, and structural deformation are calculated by DFT methods. The lowest value of Eg (3.796 eV) was obtained for TS-3 (the first transition state of conversion of intermediate 3,4-dichlorophenol to 3-chloroprop-2-en-1-ol and 1-chloroprop-1-ene). The Gibbs free energy and heat of reactions are negative; therefore, these reactions are favorable and spontaneous and make B12N12-NC suitable as nanosensor for TCDD detection and reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.