Abstract

Direct boundary value problem methods in connection with SQP iteration have proven very successful in solving nonlinear optimal control problems. Such methods use parameterized control functions, discretize the state differential equations by, e.g., multiple shooting or collocation, and treat the discretized BVP as an equality-constraint in a large nonlinear constrained optimization problem. In realistic applications several thousands of variables can appear in the NLP. Solution by standard techniques is therefore impractical. A careful choice of the discretization leads to QP subproblems possessing a very special m-stage block-sparse structure, where m is the grid size. The paper presents a recursive solution algorithm that fully exploits this QP sparseness to generate a factorization of the inverse of the KKT matrix in O(m) operations. A structure-preserving primal-dual barrier method is proposed for treating the generally large number of state and control inequality constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.