Abstract

The primary renal arteries transport up to one fourth of cardiac output to the kidneys for blood plasma ultrafiltration, with a functional dependence on the vessel geometry, composition and mechanical properties. Despite the critical physiological function of the renal artery, the few biomechanical studies that have focused on this vessel are either uniaxial or only partially describe its bi-axial mechanical behavior. In this study, we quantify the passive mechanical response of the primary porcine renal artery through bi-axial mechanical testing that probes the pressure-deformed diameter and pressure-axial force relationships at various longitudinal extensions, including the in-vivo axial stretch ratio. Mechanical data are used to parameterize and validate a structure-motivated constitutive model of the arterial wall. Together, experimental data and theoretical predictions of the stress distribution within the arterial wall provide a comprehensive description of the passive mechanical response of the porcine renal artery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.