Abstract

The effect of urea on the crystal structure of hen egg-white lysozyme has been investigated using X-ray crystallography. High resolution structures have been determined from crystals grown in the presence of 0, 0.7, 2, 3, 4, and 5 M urea and from crystals soaked in 9 M urea. All the forms are essentially isomorphous with the native type II crystals, and the derived structures exhibit excellent geometry and RMS differences from ideality in bond distances and angles. Comparison of the urea complex structures with the native enzyme (type II form, at 1.5 A resolution) indicates that the effect of urea is minimal over the concentration range studied. The mean difference in backbone conformation between the native enzyme and its urea complexes varies from 0.18 to 0.49 A. Conformational changes are limited to flexible surface loops (Thr 69-Asn 74, Ser 100-Asn 103), the active site loop (Asn 59-Cys 80), and the C-terminus (Cys 127-Leu 129). Urea molecules are bound to distinct sites on the surface of the protein. One molecule is bound to the active site cleft's C subsite, at all concentrations, in a fashion analogous to that of the N-acetyl substituent of substrate and inhibitor sugars normally bound to this site. Occupation of this subsite by urea alone does not appear to induce the conformational changes associated with inhibitor binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.