A structural basis for the functional differences between the cytosolic and plastid phosphoglucose isomerase isozymes

Publication Date Sep 1, 2022


Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P), thereby regulating sucrose synthesis in plant cells. In general, plants contain a pair of PGI isozymes located in two distinct compartments of the cell (cytosol and plastid) with differences in both the primary structure and the higher-order structure. Previously, we showed that the activity of cytosolic PGI (PGIc) is more robust (activity, thermal stability, substrate turnover rate, etc.) than that of the plastid counterpart (PGIp) in multiple organisms, including wheat, rice, and Arabidopsis. The crystal structures of apoTaPGIc (an isotype cytosol PGIc in Triticum aestivum), TaPGIc-G6P complex, and apoTaPGIp (an isotype plastid PGIp in Triticum aestivum) were first solved in higher plants, especially in crops. In this study, we detailed the structural characteristics related to the biochemical properties and functions of TaPGIs in different plant organelles. We found that the C-terminal domains (CTDs) of TaPGIc and TaPGIp are very different, which affects the stability of the dimerized enzyme, and that Lys213TaPGIc/Lys193TaPGIp and its surrounding residues at the binding pocket gateway may participate in the entrance and exit of substrates. Our findings provide a good example illuminating the evolution of proteins from primary to higher structures as a result of physical barriers and adaptation to the biochemical environment.


Phosphoglucose Isomerase Substrate Turnover Plant Organelles Activity Of Phosphoglucose Isomerase Multiple Organisms Higher-order Structure Counterpart In Arabidopsis C-terminal Domains Primary Structure Entrance Of Substrates

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.