Abstract

Crystallization plays an important role in many areas, and to derive a fundamental understanding of crystallization processes, it is essential to understand the sequence of solid phases produced as a function of time. Here, we introduce a new NMR strategy for studying the time evolution of crystallization processes, in which the crystallizing system is quenched rapidly to low temperature at specific time points during crystallization. The crystallized phase present within the resultant "frozen solution" may be investigated in detail using a range of sophisticated NMR techniques. The low temperatures involved allow dynamic nuclear polarization (DNP) to be exploited to enhance the signal intensity in the solid-state NMR measurements, which is advantageous for detection and structural characterization of transient forms that are present only in small quantities. This work opens up the prospect of studying the very early stages of crystallization, at which the amount of solid phase present is intrinsically low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.