Abstract

Mathematical implications of adding Gaussian white noise to the Burton–Cabrera–Frank model for N terraces (‘gaps’) on a crystal surface are studied under external material deposition for large N. The terraces separate straight, non-interacting line defects (steps) with uniform spacing initially (t = 0). As the growth tends to vanish, the gaps become uncorrelated. First, simple closed-form expressions for the gap variance are obtained directly for small fluctuations. The leading-order, linear stochastic differential equations are prototypical for discrete asymmetric processes. Second, the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy for joint gap densities is formulated. Third, a self-consistent ‘mean field’ is defined via the BBGKY hierarchy. This field is then determined approximately through a terrace decorrelation hypothesis. Fourth, comparisons are made of directly obtained and mean-field results. Limitations and issues in the modeling of noise are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.