Abstract
AbstractThe sparsity of the isotope Helium‐3, ongoing since 2009, has initiated a new generation of neutron detectors. One particularly promising development line for detectors is the multilayer gaseous detector. In this paper, a stochastic process approach is used to determine the neutron energy from the additional data afforded by the multilayer nature of these novel detectors. The data from a multilayer detector consist of counts of the number of absorbed neutrons along the sequence of the detector's layers, in which the neutron absorption probability is unknown. We study the maximum likelihood estimator for the intensity and absorption probability and show its consistency and asymptotic normality, as the number of incoming neutrons goes to infinity. We combine these results with known results on the relation between the absorption probability and the wavelength to derive an estimator of the wavelength and to show its consistency and asymptotic normality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.