Abstract

Recently several authors have proposed stochastic models of the growth of the Web graph that give rise to power-law distributions. These models are based on the notion of preferential attachment leading to the “rich get richer” phenomenon. However, these models fail to explain several distributions arising from empirical results, due to the fact that the predicted exponent is not consistent with the data. To address this problem, we extend the evolutionary model of the Web graph by including a non-preferential component, and we view the stochastic process in terms of an urn transfer model. By making this extension, we can now explain a wider variety of empirically discovered power-law distributions provided the exponent is greater than two. These include: the distribution of incoming links, the distribution of outgoing links, the distribution of pages in a Web site and the distribution of visitors to a Web site. A by-product of our results is a formal proof of the convergence of the standard stochastic model (first proposed by Simon).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.