Abstract

This paper aims to develop a method for determining margins of static aperiodic stability for electric power systems equipped with distributed generation plants. To this end, we used generalized equations of limiting modes in a stochastic formulation. Computer simulation showed that the developed methodology can be used in solving problems of operational control of the modes of electric power systems. On the basis of the results obtained, we arrived at the following conclusions: the modified equations do not allow the iterative process to converge to a trivial solution and, therefore, they ensure high reliability of results when determining stability margins in a stochastic statement; a technique based on the introduction of an additional variable can be used to improve the convergence of computational processes when determining the stability margins in a deterministic statement; the parameters of the limiting modes obtained in the deterministic and stochastic formulations may significantly differ; with an increase in the variance of the load graphs, the risk of stability violation significantly increases; at the same time, the amount of the margin determined on the basis of the Euclidean norm remains overly optimistic; in the illustrative example, a significant increase in the risk of stability violation takes place during planned and emergency shutdowns of the EPS elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.