Abstract
In robot localization, particle filtering can estimate the position of a robot in a known environment with the help of sensor data. In this paper, we present an approach based on particle filtering, for accurate stereo matching. The proposed method consists of three parts. First, we utilize multiple disparity maps in order to acquire a very distinctive set of features called landmarks, and then we use segmentation as a grouping technique. Secondly, we apply scan line particle filtering using the corresponding landmarks as a virtual sensor data to estimate the best disparity value. Lastly, we reduce the computational redundancy of particle filtering in our stereo correspondence with a Markov chain model, given the previous scan line values. More precisely, we assist particle filtering convergence by adding a proportional weight in the predicted disparity value estimated by Markov chains. In addition to this, we optimize our results by applying a plane fitting algorithm along with a histogram technique to refine any outliers. This work provides new insights into stereo matching methodologies by taking advantage of global geometrical and spatial information from distinctive landmarks. Experimental results show that our approach is capable of providing high-quality disparity maps comparable to other well-known contemporary techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.