Abstract

Abstract A vapor-phase deposition process for fabricating cesium-potassium-antimonide photocathodes is investigated. A 3×2 4-1 fractional factorial statistical experimental design was created to simultaneously determine the effects of five processing variables on photocathode performance based on quantum efficiency (QE) measurements of nascent photocathodes. The five processing variables are antimony thickness, potassium thickness, source temperature, cesium temperature rampdown, and substrate temperature. Thirty-five combinations of the five variables were performed (resulting in 35 cathodes): 24 combinations were unique and 11 were replicates. A twelve-run complementary phase followed the amin experiment, for a total of 47 photocathodes. This statistical approach enables independent estimation of the main effects and interaction effects of the five variables. Statistically significant effects are separated from nonsignificant effects. The fabrication process will be used on the Average Power Laser Experiment (APLE) conducted at Boeing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.