Abstract
The complex structures of the void space of porous media are often characterised by parameters such as pore network connectivity and lattice size. This paper presents a comparison of the estimates of these parameters obtained from two previous methods based on nitrogen sorption and mercury porosimetry, and also from a new, completely independent approach based on pulsed-gradient spin-echo nuclear magnetic resonance (PGSE NMR). It was found that the new PGSE NMR technique obtains estimates of connectivity and lattice size in agreement with nitrogen sorption but different to mercury porosimetry. This difference was attributed to the various physical processes involved actually probing different aspects of the pore space geometry. It was further suggested that the representation of the pore structure derived from either nitrogen sorption or PGSE NMR is really a mapping of the real pore space onto an equivalent abstract, random pore bond network. However, it has been shown that this mapping does capture some of the characteristic properties of the pore space that control transport over mesoscopic (<10 μm) length scales. For materials which additionally possessed macroscopic (>10 μm) structural heterogeneity, it was found that the model could also be adapted to predict the macroscopic transport properties of the porous medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.