Abstract

ABSTRACTSpatiotemporal co-occurrence patterns (STCOPs) are subsets of Boolean features whose instances frequently co-occur in both space and time. The detection of STCOPs is crucial to the investigation of the spatiotemporal interactions among different features. However, prevalent STCOPs reported by available methods do not necessarily indicate the statistically significant dependence among different features, which is likely to result in highly erroneous assessments in practice. To improve the reliability of results, this paper develops a statistical method to detect STCOPs and discern their statistical significance. The proposed method detects STCOPs against the null hypothesis that the spatiotemporal distributions of different features are independent of each other. To construct the null hypothesis, suitable spatiotemporal point-process models considering spatiotemporal autocorrelation are employed to model the distributions of different features. The performance of the proposed statistical method is assessed by synthetic experiments and a case study aimed at identifying crime patterns among multiple crime types in Portland City. The experimental results demonstrate that the proposed method is more effective for detecting meaningful STCOPs than the available alternative methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.