Abstract

This work is part of a systematic X-ray survey of the Taurus star forming complex with XMM-Newton. We study the time series of all X-ray sources associated with Taurus members, to statistically characterize their X-ray variability, and compare the results to those for pre-main sequence stars in the Orion Nebula Cluster and to expectations arising from a model where all the X-ray emission is the result of a large number of stochastically occurring flares. We find that roughly half of the detected X-ray sources show variability above our sensitivity limit, and in ~ 26 % of the cases this variability is recognized as flares. Variability is more frequently detected at hard than at soft energies. The variability statistics of cTTS and wTTS are undistinguishable, suggesting a common (coronal) origin for their X-ray emission. We have for the first time applied a rigorous maximum likelihood method in the analysis of the number distribution of flare energies on pre-main sequence stars. In its differential form this distribution follows a power-law with index alpha = 2.4 +- 0.5, in the range typically observed on late-type stars and the Sun. The flare energy distribution is probably steep enough to explain the heating of stellar coronae by nano-flares (alpha > 2), albeit associated with a rather large uncertainty that leaves some doubt on this conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.