Abstract
The explosion of data volume in the digital age has completely changed the corporate and industrial environments. In-depth analysis of large datasets to support strategic decision-making and innovation is the main focus of this paper’s exploration of big data management engineering. A thorough examination of the basic elements and approaches necessary for efficient big data use—data collecting, storage, processing, analysis, and visualization—is given in this paper. With real-life case studies from several sectors to complement our exploration of cutting-edge methods in big data management, we present useful applications and results. This document lists the difficulties in handling big data, such as guaranteeing scalability, governance, and data quality. It also describes possible future study paths to deal with these issues and promote ongoing creativity. The results stress the need to combine cutting-edge technology with industry standards to improve decision-making based on data. Through an analysis of approaches such as machine learning, real-time data processing, and predictive analytics, this paper offers insightful information to companies hoping to use big data as a strategic advantage. Lastly, this paper presents real-life use cases in different sectors and discusses future trends such as the utilization of big data by emerging technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.