Abstract

We consider a two-queue model with state-dependent setups, in which a single server alternately serves the two queues. The high-priority queue is served exhaustively, whereas the low-priority queue is served according to the k-limited strategy. A setup at a queue is incurred only if there are customers waiting at the polled queue. We obtain the transforms of the queue length and sojourn time distributions under the assumption of Poisson arrivals, generally distributed service times, and generally distributed setup times. The interest for this model is fueled by an application in the field of logistics. It is shown how the results of this analysis can be applied in the evaluation of a stochastic two-item single-capacity production system. From these results we can conclude that significant cost reductions are possible by bounding the production runs of the low-priority item, which indicates the potential of the k-limited service discipline as priority rule in production environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.