Abstract

The occurrence of natural disasters as a consequence of accidental hazardous chemical spills remains a concern. The inadequate, or delayed, initial response may fail to mitigate their impact; hence, imminent monitoring of responses in the initial stage is critical. Classical contact-type measurement methods, however, sometimes miss solvent chemicals and invoke risks for operators during field operation. Remote sensing methods are an alternative method as non-contact, spatially distributable, efficient and continuously operatable features. Herein, we tackle challenges posed by the increasingly available UAV-based hyperspect ral images in riverine environments to identify the presence of hazardous chemical solvents in rivers, which are less investigated in the absence of direct measurement strategies. We propose a referable standard procedure for a unique spectral library based on pre-scanning hyperspectral sensors with respect to representative hazardous chemicals registered on the national hazardous chemical list. We utilized the hyperspectral images to identify 18 types of hazardous chemicals injected into the river in an outdoor environment, where a dedicated hyperspectral ground imaging system mounted with a hyperspectral camera was designed and applied. Finally, we tested the efficiency of the library to recognize unknown chemicals, which showed >70% success rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.