Abstract

CITATION: Coetzer, E. O. & Vlok, P. J. 2019. A standardised model to quantify the financial impact of poor engineering information quality in the oil and gas industry. South African Journal of Industrial Engineering, 30(4):131-142, doi:10.7166/30-4-2080.

Highlights

  • Industrial assets rely on engineering information to run safely and to be environmentally responsible and profitable

  • If a defensible business case could be made, it would enable managers to weigh the benefits of a quality improvement investment against other opportunities

  • This paper reports on a research project to develop a defensible model to quantify the financial effects of poor engineering information quality, deconstructed into the classifications that follow from the research design

Read more

Summary

23 Oct 2018 16 Oct 2019 12 Dec 2019

But digital formats increase the risk of lost data quality, implying huge risk. The elements are productivity and production loss, and increased cost and risk. A Monte Carlo method was field tested. The results were presented in graphical and Pareto form to facilitate funding and prioritisation. Die energie-industrie benodig hoë gehalte data, maar digitale formate verhoog die moontlikheid van gehalteverlies, wat groot risiko tot gevolg mag hê. Die voordele van data gehalte is moeilik berekenbaar en dus so ook die regverdiging van uitgawes verbonde aan verbeteringsprojekte. Die elemente is verlies aan produksie en produktiwiteit en verhoogde koste en risiko. ʼn Monte-Carlo simulasiemodel is gebou en getoets. Die resultate is grafies en in Pareto-formaat aangebied om befondsing en prioritisering te vergemaklik. Die resultate bewys dat die kostes noemenswaardig is. Geleenthede bestaan vir meer gesofistikeerde modelle enn ondersoek na die oorsake moet van stapel gestuur word

INTRODUCTION
Initial literature survey
Survey design
Corporate decision-making
Results presentation
Statistical methods
Monte Carlo simulation
Method Bayesian statistics
Research design
Survey structure
Alternative contribution
Data collection
Stochastic model
Calculate the mean xij and standard deviation Sij for each question k n
Formatting results presentation
CASE STUDY

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.