Abstract

Practical temperature measurements in accordance with the international system of units require traceability to the international temperature scales currently in force. Along with the awaited redefinition of the unit of temperature, the kelvin, on the basis of the Boltzmann constant, in future its mise en pratique will allow the use of approved methods of primary thermometry for the realization and dissemination of the kelvin. To support this process, we have developed a DC superconducting quantum interference device-based noise thermometer especially designed for measurements of thermodynamic temperature in a broad temperature range from 5 K down to below 1 mK. In this paper, we describe in detail the primary magnetic field fluctuation thermometer and the underlying model applied for the temperature determination. Experimental measurement results are presented for a comparison with the Provisional Low Temperature Scale 2000 between 0.7 K and 16 mK including an uncertainty budget for the measured thermodynamic temperatures. In this set-up, the relative combined standard uncertainty is equal to 0.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.