Abstract

We introduce a robust optimization method for flip-free distortion energies used, for example, in parametrization, deformation, and volume correspondence. This method can minimize a variety of distortion energies, such as the symmetric Dirichlet energy and our new symmetric gradient energy. We identify and exploit the special structure of distortion energies to employ an operator splitting technique, leading us to propose a novel Alternating Direction Method of Multipliers (ADMM) algorithm to deal with the non-convex, non-smooth nature of distortion energies. The scheme results in an efficient method where the global step involves a single matrix multiplication and the local steps are closed-form per-triangle/per-tetrahedron expressions that are highly parallelizable. The resulting general-purpose optimization algorithm exhibits robustness to flipped triangles and tetrahedra in initial data as well as during the optimization. We establish the convergence of our proposed algorithm under certain conditions and demonstrate applications to parametrization, deformation, and volume correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.