Abstract

This paper presents theoretical and experimental discussions on a practical speed-sensorless start-up method for an induction motor driven by a modular multilevel cascade inverter based on double-star chopper cells (MMCI-DSCC) from standstill to middle speed. This motor drive is suitable, particularly for a large-capacity fan- or blower-like load. The load torque is proportional to a square of the motor mechanical speed. The start-up method is characterized by combining capacitor-voltage control with motor-speed control. The motor-speed control with the minimal stator current plays a crucial role in eliminating a speed sensor from the drive system and in reducing an ac-voltage fluctuation occurring across each dc capacitor. Experimental results obtained from the 400-V 15-kW downscaled system with no speed sensor verify that the motor-speed control proposed for the DSCC-based drive system can enhance the start-up torque by a factor of three under the same ac-voltage fluctuation. Several start-up waveforms show stable performance from standstill to middle speed with different load torques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.