Abstract

This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.