Abstract

This paper presents the spectral gap-based topology control algorithm (SGTC) for wireless backhaul networks, a novel approach that employs the Laplacian Spectral Gap (LSG) to find expander-like graphs that optimize the topology of the network in terms of robustness, diameter, energy cost, and network entropy. The latter measures the network’s ability to promote seamless traffic offloading from the Macro Base Stations to smaller cells by providing a high diversity of shortest paths connecting all the stations. Given the practical constraints imposed by cellular technologies, the proposed algorithm uses simulated annealing to search for feasible network topologies with a large LSG. Then, it computes the Pareto front of the set of feasible solutions found during the annealing process when considering robustness, diameter, and entropy as objective functions. The algorithm’s result is the Pareto efficient solution that minimizes energy cost. A set of experimental results shows that by optimizing the LSG, the proposed algorithm simultaneously optimizes the set of desirable topological properties mentioned above. The results also revealed that generating networks with good spectral expansion is possible even under the restrictions imposed by current wireless technologies. This is a desirable feature because these networks have strong connectivity properties even if they do not have a large number of links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.