Abstract

AbstractWe describe a spectral element approach to study the stability and equilibria solutions of Delay differential equations (DDEs). In contrast to the prototypical temporal finite element analysis (TFEA), the described spectral element approach admits spectral rates of convergence and allows exploiting hp‐convergence schemes. The described approach also avoids the limitations of analytical integrations in TFEA by using highly accurate numerical quadratures—enabling the study of more complicated DDEs. The effectiveness of this new approach is compared with well‐established methods in the literature using various case studies. Specifically, the stability results are compared with the conventional TFEA and Legendre collocation methods whereas the equilibria solutions are compared with the numerical simulations and the homotopy perturbation method (HPM) solutions. Our results reveal that the presented approach can have higher rates of convergence than both collocation methods and the HPM. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.