Abstract

We present a scheme implementing an a posteriori refinement strategy in the context of a high-order meshless method for problems involving point singularities and fluid–solid interfaces. The generalized moving least squares (GMLS) discretization used in this work has been previously demonstrated to provide high-order compatible discretization of the Stokes and Darcy problems, offering a high-fidelity simulation tool for problems with moving boundaries. The meshless nature of the discretization is particularly attractive for adaptive h-refinement, especially when resolving the near-field aspects of variables and point singularities governing lubrication effects in fluid–structure interactions. We demonstrate that the resulting spatially adaptive GMLS method is able to achieve optimal convergence in the presence of singularities for both the div-grad and Stokes problems. Further, we present a series of simulations for flows of colloid suspensions, in which the refinement strategy efficiently achieved highly accurate solutions, particularly for colloids with complex geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.