Abstract

The design of the 56-b significant adder used in the Advanced Micro Devices Am29050 microprocessor is described. Originally implemented in a 1- mu m design role CMOS process, it evaluates 56-b sums in well under 4 ns. The adder employs a novel method for combining carries which does not require the back propagation associated with carry lookahead, and is not limited to radix-2 trees, as is the binary lookahead carry tree of R.P. Brent and H.T. Kung (1982). The adder also utilizes a hybrid carry lookahead-carry select structure which reduces the number of carriers that need to be derived in the carry lookahead tree. This approach produces a circuit well suited for CMOS implementation because of its balanced load distribution and regular layout.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.