Abstract

The structure-based design of protein-ligand interfaces with respect to different small molecules is of great significance in the discovery of functional proteins. By statistical analysis of a set of protein-ligand complex structures, it was determined that water-mediated hydrogen bonding at the protein-ligand interface plays a crucial role in governing the binding between the protein and the ligand. Based on the novel statistic results, a solvated ligand rotamer approach was developed to explicitly describe the key water molecules at the protein-ligand interface and a water-mediated hydrogen bonding model was applied in the computational protein design context to complement the continuum solvent model. The solvated ligand rotamer approach produces only one additional solvated rotamer for each rotamer in the ligand rotamer library and does not change the number of side-chain rotamers at each protein design site. This has greatly reduced the total combinatorial number in sequence selection for protein design, and the accuracy of the model was confirmed by two tests. For the water placement test, 61% of the crystal water molecules were predicted correctly in five protein-ligand complex structures. For the sequence recapitulation test, 44.7% of the amino acid identities were recovered using the solvated ligand rotamer approach and the water-mediated hydrogen bonding model, while only 30.4% were recovered when the explicitly bound waters were removed. These results indicated that the developed solvated ligand rotamer approach is promising for functional protein design targeting novel protein-ligand interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.